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OVERVIEW

Timeline
= Start: October 1, 2017
= End: September 30, 2021

= Percent Complete: 37%

Budget

= Funding for FY19 — 6390k
= ANL — 2400k
= NREL — 1600K
= INL — 440K
= SLAC - 1000K
= LBNL — 950K
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Barriers

= Cell degradation during fast charge

» Low energy density and high cost of
fast charge cells

Partners

Argonne National Laboratory

Idaho National Laboratory

Lawrence Berkeley National Lab

National Renewable Energy
Laboratory

SLAC National Accelerator Lab



RELEVANCE

Impact:
Increase electric vehicle adoption by

decreasing charge time
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Mitigate cycle life issues due to Li plating
and heat when charging above 4C
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Refine key challenges in identifying Li
plating, materials degradation, electrode
design and transport.
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Using full cells to identify and quantify Charger Power (kW)

failure modes, provide insight into
materials degradation after cycling and
areas where materials/electrolyte advance
can be made.

EXE:_EL B ; Ahmed et. al, J. Power Sources, 367 (2017), 250




MILESTONES

INL related milestones in XCEL

End Date

Quantitate Single Layer
Pouch Cell Failure Modes

Identification of enhanced
transportation electrolytes

Characterization of
electrochemical Li
reversibility

Correlate electrochemical
and acoustic signals
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12/31/2018

3/31/2019

6/30/2019

9/30/2019

Complete

Complete (also see Bat371)

In progress

In progress



APPROACH
Impacts of high rate charging

— ldentify charge acceptance limitations

— Understand overvoltage due to transport, charge
transfer and ohmic contributions

— Evaluate changes as a function of aging

Identify key barriers as different charge conditions are
used

— Focus on clearly identifying limitations and benefits

ldentify electrochemical signals for reversible Li
plating

Provide assorted samples to other team members after
completion of evaluation
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EVALUATION AND
PROTOCOL
DEVELOPMENT
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LOW VARIABILITY FOR AS RECEIVED CELLS

Test set up and design

= Low variability as received
— Round 1 — 1.9 mAh/cm?
— Round 2 — 3.0 mAh/cm?
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PROTOCOL DEVELOPMENT

Transport Characterization — Round 1 (1.9 mAh/cm?)

Overvoltage due to impedance (immediate relaxation- ms) and transport
(extended relaxation-15 min)

Impedance (ohmic+ Rxn polarizations) varies linearly w/ C-rate

Distinct transport limitation arises above 7C
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ALIGNMENT WITH MODELING
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PROTOCOL DEVELOPMENT

Protocols to minimize transport limitations

Multiple ways to achieve 95+% charge

acceptance in 10 min
Multi-step profiles reduce time in CV
Less time at maximum voltage
0 Charge acceptance at BOL
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AGING

Benefits from profile in reducing aging

High variability for most charge profiles - — — Mz-ffz_csfe‘;vmm)
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CHARACTERIZATION

AND FAILURE
ANALYSIS — ROUND 1
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UNDERSTANDING FAILURE

Multiple degradation modes
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Experimental dQ/dV compared to simulated fade using Alawa 3

Best fit aligned combined loss of Li inventory (LLI) and loss of
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M. Dubarry, C. Truchot, B. Y. Liaw, J. Power Sources, 219, 204 (2012). 595
Alawa toolbox, available at: https://www.soest.hawaii.edu/HNEI/alawa/
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SIGNIFICANT CATHODE FADE

Verification of cathode fade

Post-test extraction of cathodes indicates no

delamination

Cycling in a half cell at C/20 shows significant fade

dQ/dV suggests both active material loss and

suppressed kinetics
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OTHER FAILURE MODES
Li Plating?

Most cells show few signs of Li plating
Not all cells in a charge condition had visual signs of plating

Li that was observed only in isolated locations
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POST-TEST CHARACTERIZATION

Tested at INL, then sent to ANL for additional characterization
Lithium deposit
Greyish areas

9-C CC/CcV 9-C MS5 Missing coating

6.8-C MS2 6.8-C CC/CV

6.8-C MS1
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CHARACTERIZATION

AND FAILURE
ANALYSIS — ROUND 2
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CYCLING PERFORMANCE AT HIGHER LOADING
Round 2 (3.0 mAh/cm? loading)
Higher loading, more pronounced transport limitations

More direct visual observation of Li — Aligns with XRD
from SLAC

Lower loss of cathode active material at low rates

Variability still prominent
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IMPACT OF TEMPERATURE IN POUCH CELLS

Following Cell Testing at Argonne’s EADL at Select Temperatures

= Lithium plating observed during post-test analysis

= Extent of plating seems to inversely depend on test temperature (expected)

40°C 50°C
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IN SITU VERIFICATION OF PLATING LI
Cycling: 6C, CCCV, 450 cycles
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* Intensities of Li and Gr anti-correlated
* Intensities of Li and LiC,/LiC,, correlated
* NMC shows pattern; no obvious correlation with Li

e See ES 384
XCEL  siemey oy




ADDITIONAL CATHODE FADE

Cathode cracking at high rates, but no apparent bulk cation mixing
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RESPONSE TO PREVIOUS YEARS REVIEWERS’
COMMENTS

Not previously reviewed
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COLLABORATION ACROSS LABS AND
UNIVERSITIES

Cell and electrode design and building, performance
Argonne o characterization, post-test, cell and atomistic modeling, cost
modeling

-~

BERKELEY LAB

Lomce Suriaiey Natins Librtory

Li detection, electrode architecture, diagnostics

i Performance characterization, Li detection, failure analysis,
"'.\ electrolyte modeling and characterization, acoustic detection
Idaho National Loboratory (Wlth Prlnceton)

g 2 N R E L Thermal characterization, life modeling, micro and macro
L‘M.ONfL renewanie enerey eonrone SCal@ mModeling, electrolyte modeling and characterization

el Ay
ghn\, Li detection, novel separators, diagnostics

NATIONAL ACCELERATOR LABORATORY
‘ UNIVERSITY
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REMAINING CHALLENGES AND BARRIERS

= Refine analysis on cathode fade and mechanical fracturing
= Refine understanding of electrolyte transport

= Cross-correlate Li detection across organizations using different methods
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PROPOSED FUTURE RESEARCH

= Expand fundamental understanding of cathode cracking associated with high
rate charging

— Electrolyte impacts
— Expanded design-of-experiments to capture emergence of cracking
— Rate and protocol drivers for cracking

= Cell variability analysis

— Understand how electrode structures and localized variation drive degradation (both
cathode and anode)

— Localized Li plating — identify drivers, emergence and growth mechanisms

= Continue to identify and ameliorate transport limitations
— Extended performance analysis — Do the electrolytes also enable high cycle life
— Li plating and cathode cracking implications

Any proposed future work is subject to change based on funding levels
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SUMMARY

= Elevated rates enhance cathode cracking
— Fade associated with loss of cathode material close to observed losses of Li inventory

= Distinct locations of Li observed after testing
— Direct electrochemical detection of Li during cycling difficult
— Only at most elevated fade conditions is broad plating of Li observed

= Rates up to 4C appear to be reasonable
— Transport still a key limitation that needs to be addressed
— Less than 10% fade over 450 fast charge cycles
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TECHNICAL BACKUP SLIDES
Additional Round 2 Aging

10 min (80% charge) protocol

15 min (90% charge) protocol
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TECHNICAL BACKUP SLIDES
Cathode SEM - Round 2

Fresh Cathode
Laminate

4C CC-CV (cell 16) after 450
cycles

6C CC-CV
after 450
cycles

Non-FIB SEM does not clearly identify cracking
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TECHNICAL BACKUP SLIDES

Example Alawa Analysis
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Offset and N:P ratio distinctly shift with aging due to cathode loss
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